Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons.

نویسندگان

  • M Papa
  • M C Bundman
  • V Greenberger
  • M Segal
چکیده

We monitored developmental alterations in the morphology of dendritic spines in primary cultures of hippocampal neurons using confocal laser scanning microscopy (CLSM) and the fluorescent marker Dil. Dissociated rat hippocampal neurons were plated on polylysine-coated glass cover slips and grown in culture for 1-4 weeks. Fixed cultures were stained with Dil and visualized with the CLSM. Spine density, spine length, and diameters of spine heads and necks were measured. Some cultures were immunostained for synaptophysin and others prepared for EM analysis. In the 1-3 week cultures, 92-95% of the neurons contained spiny dendrites. Two subpopulations of spine morphologies were distinguished. At 1 week in culture, "headless" spines constituted 50% of the spine population and were equal in length to the spines with heads. At 2, 3, and 4 weeks in culture headless spines constituted a progressively smaller fraction of the population and were, on average, shorter than spines with heads. Spines with heads had narrower necks than headless spines. At 3 weeks in culture, spines were associated with synaptophysin-immunoreactive labeling, resembling synaptic terminals. At 4 weeks in culture, only 70% of the Dil-filled cells had spiny dendrites, and the density of spines decreased. Ultrastructurally, the majority of dendritic spine-like structures at 1 week resembled long filopodia without synaptic contacts. The majority of axospinous synapses were on short "stubby" spines. At 3 weeks in culture, the spines were characteristic of those seen in vivo. They contained no microtubules or polyribosomes, were filled with a characteristic, filamentous material, and formed asymmetric synapses. These studies provide the basis for further analysis of the rules governing the formation, development, and plasticity of dendritic spines under controlled, in vitro conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats

Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...

متن کامل

Cdk5 Is Essential for Amphetamine to Increase Dendritic Spine Density in Hippocampal Pyramidal Neurons

Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant's effects on dendrit...

متن کامل

Morphological Changes in Hippocampal Ca1 Area in Diabetic Rats: A Golgi-impregnation Study

Background and Objective: Although diabetes mellitus is known to be one of the risk factors for dementia but neuropathic changes in the brain of diabetic patients have not been completely revealed. Therefore, this research study was done to evaluate structural changes in pyramidal neurons of hippocampal ...

متن کامل

Morphological Changes of Cortical and Hippocampal Neurons after Treatment with VEGF and Bevacizumab

AIMS Vascular endothelial growth factor (VEGF) is a hallmark of glioblastoma multiforme (GBM) and plays an important role in brain development and function. Recently, it has been reported that treatment of GBM patients with bevacizumab, an anti-VEGF antibody, may cause a decline in neurocognitive function and compromise quality of life. Therefore, we investigated the effects of VEGF and bevaciz...

متن کامل

Activity-regulated somatostatin expression reduces dendritic spine density and lowers excitatory synaptic transmission via postsynaptic somatostatin receptor 4.

Neuronal activity regulates multiple aspects of the morphological and functional development of neural circuits. One mechanism by which it achieves this is through regulation of gene expression. In a screen for activity-induced genes, we identified somatostatin (SST), a neuropeptide secreted by the SST subtype of interneurons. Using real time quantitative PCR and ELISA, we showed that persisten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1995